Cross-feeding dynamics described by a series expansion of the replicator equation.

نویسندگان

  • Torbjörn Lundh
  • Philip Gerlee
چکیده

Understanding how ecosystems evolve and how they respond to external perturbations is critical if we are to predict the effects of human intervention. A particular class of ecosystems whose dynamics are poorly understood are those in which the species are related via cross-feeding. In these ecosystems the metabolic output of one species is being used as a nutrient or energy source by another species. In this paper we derive a mathematical description of cross-feeding dynamics based on the replicator equation. We show that under certain assumptions about the system (e.g., high flow of nutrients and time scale separation), the governing equations reduce to a second-order series expansion of the replicator equation. By analysing the case of two and three species we derive conditions for co-existence and show under which parameter conditions one can expect an increase in mean fitness. Finally, we discuss how the model can be parameterised from experimental data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

External and Internal Incompressible Viscous Flows Computation using Taylor Series Expansion and Least Square based Lattice Boltzmann Method

The lattice Boltzmann method (LBM) has recently become an alternative and promising computational fluid dynamics approach for simulating complex fluid flows. Despite its enormous success in many practical applications, the standard LBM is restricted to the lattice uniformity in the physical space. This is the main drawback of the standard LBM for flow problems with complex geometry. Several app...

متن کامل

A Stochastic algorithm to solve multiple dimensional Fredholm integral equations of the second kind

In the present work‎, ‎a new stochastic algorithm is proposed to solve multiple dimensional Fredholm integral equations of the second kind‎. ‎The solution of the‎ integral equation is described by the Neumann series expansion‎. ‎Each term of this expansion can be considered as an expectation which is approximated by a continuous Markov chain Monte Carlo method‎. ‎An algorithm is proposed to sim...

متن کامل

NUMERICAL APPROACH TO SOLVE SINGULAR INTEGRAL EQUATIONS USING BPFS AND TAYLOR SERIES EXPANSION

In this paper, we give a numerical approach for approximating the solution of second kind Volterra integral equation with Logarithmic kernel using Block Pulse Functions (BPFs) and Taylor series expansion. Also, error analysis shows efficiency and applicability of the presented method. Finally, some numerical examples with exact solution are given.

متن کامل

Replicator equations and the principle of minimal production of information.

Many complex systems in mathematical biology and other areas can be described by the replicator equation. We show that solutions of a wide class of replicator equations minimize the KL-divergence of the initial and current distributions under time-dependent constraints, which in their turn, can be computed explicitly at every instant due to the system dynamics. Therefore, the Kullback principle...

متن کامل

The coefficients of differentiated expansions of double and triple Jacobi polynomials

Formulae expressing explicitly the coefficients of an expansion of double Jacobi polynomials which has been partially differentiated an arbitrary number of times with respect to its variables in terms of the coefficients of the original expansion are stated and proved. Extension to expansion of triple Jacobi polynomials is given. The results for the special cases of double and triple ultraspher...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bulletin of mathematical biology

دوره 75 5  شماره 

صفحات  -

تاریخ انتشار 2013